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SUMMARY 
The compression of a perfect gas between a uniformly moving 

piston and a rigid wall is discussed in the one-dimensional case. 
If the piston moves with a finite speed, it will initiate a shock in the 
gas which will reflect successively from rigid wall and piston 
and cause the compression process to deviate from a reversible 
adiabatic process. Expressions are derived for the relative 
changes in pressure and density at each shock reflection. Then 
values of density and pressure after any number of shock reflections 
are computed relative to their initial values, and, in terms of these, 
the corresponding values of temperature and entropy, as well as 
shock speeds, are determined. The limiting value of the entropy 
change, as the number of reflections goes to infinity, is obtained as 
a function of the ratio of specific heats of the gas and the strength of 
the initial shock. Hence it is possible to estimate an upper limit 
to the deviation of the shock compression process from a reversible 
adiabatic process. Some illustrative numerical examples are 
given. 

I. INTRODUCTION 
When a gas is compressed by the motion of a piston, one phenomenon 

that may cause the compression to deviate from a reversible adiabatic 
process results from the fact that, if the piston moves with a finite speed, 
hydrodynamic shocks will be produced. It is the purpose of this paper 
to discuss, in the idealized case of zero heat conduction and viscosity, 
the compression of a gas by a piston which moves with finite speed, to give 
a detailed description of the process as shocks run back and forth between 
the moving piston and an enclosing rigid wall, and to determine the deviation 
of this shock compression process from a reversible adiabatic process. 
In  the absence of dissipative effects, the shock front may be represented 
as a mathematical discontinuity in pressure, density, etc. ; €or a discussion 
of this point, see Courant & Friedrichs (1948), also Grad (1952) and Sachs 
(1946). 

Consider the one-dimensional system consisting of a perfect gas with 
zero viscosity and heat conductivity confined between two plane parallel 
walls that are impermeable to heat. One wall is considered to be rigid 
and the other to move toward the first with constant speed. If the speed 
of the moving wall (or piston) is infinitely slow, then (assuming the internal 
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energy of the gas to be proportional to the temperature) the pressure p 
and the density p will increase continuously according to the adiabatic 
relation pp-Y = constant, where y is the ratio of specific heats, and the 
process will be reversible. If, however, the piston is suddenly given a 
finite velocity inward, it will initiate a shock in the gas. The  shock will 
reflect at the rigid wall producing a second shock which will in turn be 
reflected at the moving wall, and so on. When each new shock passes 
a given point, the pressure and density of the gas at that point will undergo 
discontinuous increases. As a shock front traverses the distance between 
piston and rigid wall, it separates the gas into two regions throughout each 
of which the pressure, density and material velocity are uniform, but change 
discontinuously across the shock front. At the instant of reflection at 
either end, one of the regions has zero volume and the gas is uniform 
throughout. Since the entropy of the gas increases as each shock passes, 
the process is irreversible and pp-?, which is a function of the entropy, no 
longer remains constant. As a consequence, at a given compression the 
pressure and temperature of the gas will be higher in the shock compression 
case than they would be in the case of constant entropy. The  amount 
by which the process deviates from the adiabatic relation pp-y = constant 
depends upon the strength of the initial shock ; that is, the ratio of the pressure 
behind the initial shock to its original value, which in turn is related to the 
speed of the moving wall. 

Using the conservation equations for shocks, it is possible to compute 
the ratios of density and pressure behind the shock to their values in front 
of it after each successive reflection. Then the values of density and pressure 
behind the shock after any number of reflections are computed relative to 
their initial values, and, in terms of these, the corresponding values of 
temperature and entropy, as well as the shock speeds, are determined. 
I n  order to estimate an upper limit to the deviation from the constant entropy 
case, the limiting value, as the number of reflections goes to infinity, of the 
functionpp-Y is computed. This limit is derived as a function of the strength 
of the original shock and the y which characterizes the gas. Finally, some 
illustrative numerical examples are given. 

11. PRESSURE RATIO AND COMPRESSION PRODUCED BY EACH SHOCK 

Let pn, p ,  and un (n  = 0, 1, 2, ...) be the density, pressure and material 
velocity, respectively, behind the nth shock, where the condition n = 0 
corresponds to the initial conditions in the gas, n = 1 corresponds to condi- 
tions behind the first shock (that is, the initial shock produced by the moving 
wall), n = 2 corresponds to conditions behind the second shock (that is, 
the shock produced by the first reflection), and so on. The  material 
velocities, un, will be measured relative to the rigid wall and the gas is assumed 
to be initially at rest ; that is, uo = 0. Let 
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The equations describing conservation of mass and momentum may be 
combined to give the relation* 

The initial and boundary conditions are such that 
(un-1-~n)2 = (Pn-Pn-l)(Pn%-P3. 

(a) if the shock is produced at the rigid wall, 
u,-1 = w ; 

(b)  if the shock is produced at the moving wall, 
u,  = 0, 

u,  = w, u,1 = 0, 
where w is the velocity of the moving wall. So in either case the left-hand 
side of the above equation is w2, and, substituting ( l ) ,  it becomes 

If the perfect gas has the property that the internal energy is proportional 
to the temperature, then the internal energy per unit mass is given by 

and the conservation equations lead to the Hugoniot relation 

w2p,-1 pi?, = (a, - 1)( 1 -.I;;'). 

En = Pn/Pn(Y - 9 ,  

(2) 

where 
and y is the ratio of specific heats. 

T o  obtain expressions for an and qn as functions of n, y and a,, first 
write ( 2 )  with n replaced by n + 1 ,  and divide the resulting equation by (2). 
The result may be written 

Then, by substituting (3) into this equation, one obtains the equation 

which is a quadratic having the two solutions : 

and 
The first of these solutions does not apply because the compression, yn, 
must be greater than or equal to unity for all n. 

Given the strength of the initial shock (that is, q) and using equation (3) 
together with the recursion formula (4), it is possible to obtain un and rln 
for all n. 

P = (Y+ 1 M Y -  11, 

a n h I + 1 -  W- -q?21)  = vn(an--  1)(1 -vnl). 

( ~ q n -  l ) (~?n+l -  = (rn-1>2(p-qn+1)qn+1, 

v n + 1 =  712; 
T,+1 = (Pvn - l>/(rn + P - 2). (4) 

The general expressions are found to be 
a, = ( h + p + n ) / ( h + n - l ) ,  (5 4 
qn = ( A + p + n - l ) / ( X + n ) ,  (5 b) 

A=(P+1) / (a1 -1 ) ,  P = ( Y + l ) / ( Y - 1 ) ,  1 d r < m ,  1 < u , < m .  (6) 
where 

* For a derivation of the shock relations and a general discussion of shock waves 
in one-dimensional flow see, for example, Courant & Friedrichs (1948), Chapter 111, 
Part c. 

F.M. 2 D  
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That equ ations ( 5 )  do indeed represent the general solution may be verified 
by induction as follows: 

(1) For n = 1, (5 b) becomes q n  = (1 + pal)/(p + q), which, on comparison 

(2) Equation (5 b) satisfies the recursion relation (4). 
(3) Equations ( 5 )  together satisfy (3). 

with (3), is seen to be the correct result. 

111. CONDITIONS BEHIND THE ~ T H  SHOCK 

1. Pressure and density 

shock referred to the initial pressure and density, Po and p,,. 
(1) and ( 5 ) ,  one obtains 

Let nn and K,  be the pressure and density, respectively, behind the nth 
Then, using 

n 

(-1 
(7 a) 

( A  + p+ l ) (h+p  + 2) ...( h +p +n)  
A(A+ 1) ...( A+n- 1) ' 77, = pn/po = II 0, = 

(7b) 

ryX+ 1) = Zr(Z), (8) 

(9 a) 

n (A +p)(h +p  + 1) ...( A + p + n - 1) 
(AS l)(A+2) ...( A+n) Kn = Pn/Po = fl r ~ i  = 

i -1 

On introducing the difference equation for the I?-function, namely, 

(7) may be written 
rp)r(A +P + n  + 1) 
r(A + II. + l)r(A + n) ' Ir, = 

2. Temperature 

to its initial value is, from (7), 
Let Oi =pi/pi. Then the temperature behind the nth shock referred 

3 .  Entropy 
Rather than deal with the entropy directly, consider the following 

function of the entropy (from which, if desired, the entropy can readily 
be obtained) : F(S)  = pp-y = exp[(S- SG)/C,], 
where S is the specific entropy, 5'; is a constant and C, is the specific heat 
at constant volume which is assumed to be constant. Let F, = F(S,). 
Then the value of this function of the entropy after n reflections, relative 
to its initial value, is given by 

en = Fn/Fo = ex~C(Sm- So)/CvJ = (pn/Po)(polPn)" 

-".= - HI--. (11) 
K,Y i-1 d 
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The substitution of (10) and (9b) into (11) leads to 1". (12) 7, (A + .>(A + p  + n) 
E n =  - - 

Kg-' - h(h+p) 

The limiting value of E ,  as n-+ m will be considered in Section IV. 

4. Shock speed and time 
Let t ,  be the time at which the nth reflection occurs, that is, the time 

at which the (n+ 1)th shock is produced; and let to = 0. Then at time 
t ,  the gas has a uniform density equal to p,, and the compression relative 
to the initial density is pn/po = K ~ .  Let L be the initial distance between 
the piston and rigid wall. Then the distance between piston and rigid 
wall at time t ,  is L - wt,, where w is the speed of the piston, and the com- 
pression at time t ,  is given by 

K,=  -. 
L - m t ,  

If T = L/w is the time necessary for the piston to traverse the distance L, 
the above equation yields 

The  time interval between the nth and the (n+ 1)th reflections, that is, 
the time between the (n + 1)th and (n + 2)th shocks, is given by 

At,,,,, = t ,+,-t ,  = T ( K ~ ~ - K ; ? ~ ) .  
From (7 b), (1 b) and (5 b), it follows that 

and hence 

where K~ = 1. 

nth shock originates at  the moving wall, and 

t ,  = T(1 - K l ' ) .  (13) 

~ n + 1  = KnPn+l/fn = Knqn+l = Kn(h+ P + n)l(h + 8 + 1) ; 

At,+da TK;'(P- l ) / ( h + ~ + n ) ,  (14) 

Let D ,  be the speed of propagation of the nth shock. If n is odd, the 

L - Wt,l  

Atn-l /S 
Dn(oaa) = 

On the substitution of (13), (14) and L = wT, this equation becomes 

If n is even, the nth shock orginates at the rigid wall, and 
Dn(odd) = wO[(h + n ) / ( ~  - 1) + 11. 

In the same way as above, this equation becomes 

Dn(even) = w(A + n ) / ( ~  - 1). 
The alternative expressions may be combined in the form 

0, if n is even, 

1, ifnisodd. 
D , = w ( - + a ) ,  X+n a =  { 

(15) 

2 D 2  
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IV. LIMITING VALUE OF THE ENTROPY CHANGE 

Let E: be the limiting value of E, as the number of reflections becomes 
infinite. Then, from (1 l), 

(16) 
. F ,  U. 

(y, ul) = lim E, = hm - = rI 2 
n-t m n+m Fo i-1 d” 

and, by the substitution of (12)) 

By the introduction of the asymptotic formula for the gamma function 

and by the use of (6) and (8), the limit on the right of the above expression 
becomes 

( 2 . r r ) 4 2 e ~ = - 1 / 2 ,  (17) 

&‘+I lim [(A + .)/(A + p + ~ z ) ] ( Y - l ) ~  = 1, 
n+m 

where the final limit is evaluated by taking the logarithm and applying 
1’Hospital’s rule. Hence, 

This expression may be generalized to give the limiting value of F(S)  
measured relative to its value behind any shock, say the kth, where K is 
finite. Thus let 

& ( y , u l ) = l i m - =  H 2, k = 0 , 1 , 2 ,  .... (19) 
* F?l O0 u. 

n+m Fk i = k + l  ’d 
Then, using (5 ) )  one obtains the recursion formula 

from which, together with (18), it is readily demonstrated by induction 
that 

It is of interest to obtain the limiting values of C& (y, ul) corresponding 
Thus, as y -+ 1, then p -+ 00, h 3 co; and, to the extreme values of y. 

because of (17) and (6))  
2, (1, a,) = lirn 2m (y, ul) = lirn e-@/(*l)[(h + p + k)/(X + k)](21+2k+p)/(*l)  

Y +I P+ 

(21) - - e-2 ul(ol+ 1M%- 1) 

which is seen to be independent of k.  In the case where y -+ co, then 
p -+ 1, X + A,, = 2/(ul - 1) ; and by taking the logarithm of the second factor 
in (20) and expanding it into a power series in (p- l), one obtains 

(Tables of the function $(x) = I”(x)/I’(z) are given in Davis (1933)) 
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In  the limiting case where the initial shock is a ‘strong shock’* (that is, 
where u1 --f 00 and rll -+ p), it is seen from (6) that X --f 0. Hence, the 
preceding formulae may be reduced to those applying to the special case 
where the initial shock is a ‘ strong shock ’ by setting X = 0. It is seen that 
(20) becomes infinite for this case if either K = 0 or y = 1, but otherwise 
remains finite. 

V. NUMERICAL EXAMPLES 

In  order to compare the case of compression at constant entropy with 
the process of shock compression discussed in the foregoing sections, let 
the same symbols as used above, but without subscripts, represent corres- 
ponding quantities in the case of constant entropy. Then the pressure n, 
the density K and the temperature r ,  referred to initial values, are related by 
the expressions 

The corresponding relations for conditions behind the nth shock are 

TK-’ = 1, 77K-l = 7. 

Thus, with the same initial conditions and the same compression K = K,, 

the relation between the pressures that would be arrived at by the two 
processes is 

and, since temperature is proportional to pressure at a fixed density, 

P n l P  = nnln = E n  ; 

As the number of reflections becomes large, E ,  approaches the limiting 
value E$ (y, ul). Hence, for a given y and a,, the possible values of nn and 
K,  are confined to a strip in the (n, K-’) plane (PV diagram) which is bounded 
by the two adiabatics TK-Y = 1 and m - y  = E: (y, ul). The case of a diatomic 
gas (y  = 1.4) is illustrated in figure 1 for two different values of the strength 
of the initial shock, c1 = 5 and a, = 50. The figure represents a PV diagram 
on a logarithmic scale, where n and K - ~  are pressure and specific volume 
expressed in units of the initial pressure and specific volume, p ,  and po l ,  
respectively. The points (n,,~,), plotted as circled dots, are seen to be 
converging quite rapidly to the adiabatics for the limiting values of the 
entropy. In  table 1 numerical values of ~O,(y,u,) are listed for several 
d8eren.t values of y and a,. 

For a given y and ul, the greatest relative change in F ( S )  = p p - y  caused 
by the various shocks occurs in the first shock. It is of interest to see to 
what extent the process of shock compression subsequent to the first 
shock will deviate from a constant-entropy process that starts from condi- 
tions corresponding to those produced by the first shock. In  the limiting 
case where the first shock is a ‘ strong shock’ (ul = a), the first shock causes 

* The special case where the initial shock is a ‘ strong shock ’ has been discussed 
previously in an unpublished report by the present authors (1953). 
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an infinite change in entropy, but the subsequent change as the number 
of reflections goes to infinity remains finite for y > 1. In  table 2 numerical 
values of &,(y,ol) are listed for several different values of y and uI. In  
figure 2 a PV diagram similar to that of figure 1 is shown, where now T and 
K - - ~  are pressure and specific volume expressed in units of the pressure and 
specific volume behind the first shock, p ,  and p ~ l ,  respectively. The case 
illustrated is that of a ‘ strong shock”, which, for a given y, gives the greatest 
deviation from constant entropy. 

Figure 1. PV diagram for y = 1.4, where v and r1 are pressure and specific 
volume in units of their initial values. The straight lines are adiabatics for 
the initial value of entropy (solid) and the limiting values of entropy (dashed) 
in the two cases : ul = 5 ;  u1 = 50. The circled dots represent values of 
pressure and specific volume behind the nth shock referred to their initial 
values, where the numbers indicate values of n in each case. 
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5 1-513 

10 2-26 
25 4.42 
50 7.94 

100 14.85 
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Figure 2. PV diagram for = 1.4, where T and r1 are pressure and specific 
volume in units of their values behind the first shock. The straight lines are 
adiabatics for the value of entropy behind first shock (solid) and limiting value 
of entropy for the case u, = CO, i.e. a ' strong shock '. The circled dots 
represent values of pressure and specific volume behind tlie nth shock referred 
to their values behind the first shock, where the numbers indicate values of n. 

1 *4 513 2 3 03 

1.077 1.074 1.071 1.067 1.055 
1.511 1.506 1.500 1.485 1.434 
2-31 2.32 2.31 2.28 2-18 
4.72 4-78 4.81 4.76 4.52 
8.75 8.88 8 *94 8.91 8 -45 

16.83 17.14 17-27 17-25 16-33 
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1.083 
1.51 
2-26 
4.42 
7.94 

14.85 
co 

1 -4 

1.062 
1 *29 
1 a 5 0  
1 -73 
1 -84 
1.91 
1.99 

513 

1.056 
1-24 
1-39 
1.53 
1.59 
1.63 
1.66 

2 

1.050 
1 a20 
1-31 
1 a42 
1.45 
1 *48 
1.50 

3 

1.042 
1.15 
1 a22 
1 -28 
1.31 
1-32 
1.33 

1 a028 
1 -09 
1.12 
1 *14 
1-15 
1-16 
1-16 

Table 2. €1, as a function of 7,  the ratio of specific heats of the gas, and ul, the 
pressure ratio in the original shock. €1, is the value of the ratio of pp-7 after 
an infinite number of reflections to its value behind the first shock, where 
p and p are pressure and density, respectively. 
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